235 research outputs found

    Integrated Scenarios of Regional Development in Two Semi-Arid States of North-Eastern Brazil

    Get PDF
    Scenario analysis of the future is an important tool for supporting sustainability-oriented regional planning. To assist regional planning in two federal states in semi-arid North-eastern Brazil, Ceará and Piauí, we developed integrated qualitative¿quantitative scenarios that show potential developments of the agricultural and water resources situation as well as the internal migration until the year 2025. In these states, regional development is negatively influenced by the high seasonality of rainfall and El-Niño-related drought years. Two reference scenarios, 'Coastal Boom and Cash Crops' and 'Decentralisation - Integrated Rural Development' were developed. First, story lines were created and the development of the driving forces was quantified. Then, an integrated model, which includes modules for simulating water availability, water demand, and agricultural production and income, was applied to compute the temporal development of relevant system indicators in each of the 332 municipalities of Ceará and Piauí. These indicators encompass the fraction of the irrigation water demand than can be satisfied, the volume of water which is stored in the reservoirs at the beginning of the dry season, agricultural productivity and production as well as the internal migration among scenario regions. In addition, the impact of certain policy measures was assessed in the context of both reference scenarios. Reference and intervention scenarios were derived by an interdisciplinary group of scientists and were discussed and refined during policy workshops with planning agencies of Ceará

    Possible climate change impacts on water resources availability in a large semi-arid catchment in Northeast Brazil.

    Get PDF
    The semiarid region of Northeast Brazil is characterized by water scarcity, vulnerability of natural resources, and pronounced climatic variability. An integrated model has been developed to simulate this complex situation with an emphasis on a large-scale representation of hydrological processes and on the sensitivity to climate change. Regional climate change scenarios were obtained by empirical downscaling with large-scale climate information from different GCMs which differ strongly in their projections for future precipitation. The results show that due to these differences, it is still impossible to give quantitative values of the water availability in a forecast sense, i.e. to assign probabilities to the simulated results. However, it becomes clear that efficient and ecologically sound water management is a key question for further development. The results show that, independent of the climate change, agriculture is more vulnerable to drought impacts in the case of rainfed compared to irrigated farming. However, the capacity of irrigation and water infrastructure to enhance resilience with respect to climatic fluctuations is significantly constrained in the case of a negative precipitation trend

    Evaluation of two common source estimation measurement strategies using large-eddy simulation of plume dispersion under neutral atmospheric conditions

    Get PDF
    This study uses large-eddy simulations (LESs) to evaluate two widely used observational techniques that estimate point source emissions. We evaluate the use of car measurements perpendicular to the wind direction and the commonly used Other Test Method 33A (OTM 33A). The LES study simulates a plume from a point source released into a stationary, homogeneous, and neutral atmospheric surface layer over flat terrain. This choice is motivated by our ambition to validate the observational methods under controlled conditions where they are expected to perform well since the sources of uncertainties are minimized. Three plumes with different release heights were sampled in a manner that mimics sampling according to car transects and the stationary OTM 33A. Subsequently, source strength estimates are compared to the true source strength used in the simulation. Standard deviations of the estimated source strengths decay proportionally to the inverse of the square root of the number of averaged transects, showing statistical independence of individual samples. The analysis shows that for the car transect measurements at least 15 repeated measurement series need to be averaged to obtain a source strength within 40 % of the true source strength. For the OTM 33A analysis, which recommends measurements within 200 m of the source, the estimates of source strengths have similar values close to the source, which is caused by insufficient dispersion of the plume by turbulent mixing close to the source. Additionally, the derived source strength is substantially overestimated with OTM 33A. This overestimation is driven by the proposed OTM 33A dispersion coefficients, which are too large for this specific case. This suggests that the conditions under which the OTM 33A dispersion constants were derived were likely influenced by motions with length scales beyond the scale of the surface layer. Lastly, our simulations indicate that, due to wind-shear effects, the position of the time-averaged centerline of the plumes may differ from the plume emission height. This mismatch can be an additional source of error if a Gaussian plume model (GPM) is used to interpret the measurement. In the case of the car transect measurements, a correct source estimate then requires an adjustment of the source height in the GPM.</p

    Potential of using remote sensing techniques for global assessment of water footprint of crops

    Get PDF
    Remote sensing has long been a useful tool in global applications, since it provides physically-based, worldwide, and consistent spatial information. This paper discusses the potential of using these techniques in the research field of water management, particularly for ‘Water Footprint’ (WF) studies. The WF of a crop is defined as the volume of water consumed for its production, where green and blue WF stand for rain and irrigation water usage, respectively. In this paper evapotranspiration, precipitation, water storage, runoff and land use are identified as key variables to potentially be estimated by remote sensing and used for WF assessment. A mass water balance is proposed to calculate the volume of irrigation applied, and green and blue WF are obtained from the green and blue evapotranspiration components. The source of remote sensing data is described and a simplified example is included, which uses evapotranspiration estimates from the geostationary satellite Meteosat 9 and precipitation estimates obtained with the Climatic Prediction Center Morphing Technique (CMORPH). The combination of data in this approach brings several limitations with respect to discrepancies in spatial and temporal resolution and data availability, which are discussed in detail. This work provides new tools for global WF assessment and represents an innovative approach to global irrigation mapping, enabling the estimation of green and blue water use

    Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    Get PDF
    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts of small reservoirs are subject to climate change. Using a case-study on North-East Brazil, this paper shows that climate change impacts on water availability may be severe, and impacts on distributed water availability from small reservoirs may exceed impacts on centralised water availability from large reservoirs. Next, the paper shows that the effect of small reservoirs on water availability from large reservoirs may be significant, and increase both in relative and absolute sense under unfavourable climate change
    corecore